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Monopole flux state on the pyrochlore lattice
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The ground state of a spin—% nearest-neighbor quantum Heisenberg antiferromagnet on the pyrochlore lattice
is investigated using a large N SU(N) fermionic mean-field theory. We find several mean-field states, of which
the state of lowest energy upon Gutzwiller projection is a parity and time-reversal breaking chiral phase with
a unit monopole flux exiting each tetrahedron. This “monopole flux” state has a Fermi surface consisting of

four lines intersecting at a point. At mean field the low-energy excitations about the Fermi surface are gapless
spinons. An analysis using the projective symmetry group of this state suggests that the state is stable to small
fluctuations which neither induce a gap nor alter the unusual Fermi surface.
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I. INTRODUCTION

This paper lies at the intersection of two streams of re-
search in contemporary quantum magnetism—the study of
spin liquids and the study of geometrically frustrated magne-
tism. Specifically, we are interested in S=1/2 Heisenberg
models on the pyrochlore lattice and were motivated by ask-
ing whether they support a zero-temperature phase that
breaks no symmetries of the problem—a fully symmetric
quantum spin liquid.

The study of quantum spin liquids—being defined
broadly as states of spin systems that do not exhibit long-
range Neél order down to zero temperature—is currently in
the midst of a significant revival. The subject itself is de-
cades old with its contemporary study tracing its origins to
Anderson’s introduction of the resonating valence bond
(RVB) state! and then to his suggestion,? upon the discovery
of the cuprate superconductors, that their behavior was trace-
able to a parent spin-liquid state. But its current vogue has
much to do with recent progress in constructing actual mod-
els that realize spin-liquid behavior*' and the recognition that
a large class of spin liquids exemplify ordering beyond the
broken-symmetry paradigm—they give rise to low-energy
gauge fields but not order parameters. That such “topological
phases™? also underlie a fascinating approach to quantum
computation® only multiplies their interest.

The study of geometrically frustrated magnets* has inter-
twined roots. Indeed, Anderson’s 1972 paper identified a
small value of the spin and geometric frustration as two
sources of quantum fluctuations that could favor a spin lig-
uid. In recent years there has been steady progress in both
understanding the behavior of many geometrically frustrated
magnets but, more importantly, in synthesizing an increasing
number of compounds that realize challenging idealizations
to increasing accuracy,>® leading to a resurgence of interest
in these systems as well.
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The pyrochlore lattice is a natural object of study in this
context. It is highly frustrated and frequently realized as a
sublattice of the spinels or the pyrochlores. Potentially, it
could host a spin liquid in d=3 for small values of the spin.
Much work has gone into studying its magnetic properties in
various contexts. Most notably, it is known to lack long-
range order with nearest-neighbor interacting classical
spins,” but instead to exhibit an emergent gauge field and
dipolar correlations as T— 0. [Interestingly, this physics is
realized in the Ising “spin ice” systems (Dy and Ho titanate)?
although with an additional fundamental dipolar interaction
that leads to further elegant physics involving magnetic
monopoles.”] Attempts to work about the classical limit in
the spin-wave (1/S) expansion have lead to some insight into
the quantum “order by disorder” selection mechanism in this
limit. Though the fate of the 1/S expansion is not settled,'”
there is little reason to think that it can be informative when
it comes to small values of spin, especially the S=1/2 case*’
that is our concern in this paper. This is so partly because the
selection mechanism at large S is weak and leads to some-
what ornate states but also for the well-understood reason
that it misses out on tunneling processes that are sensitive to
the Berry phases entering the exact path integral.!’»1?

Consequently, various authors have attempted to directly
tackle the S=1/2 problem. Harris, Berlinsky, and Bruder
(HBB) (Ref. 13) initiated a cluster treatment in which the
pyrochlore lattice is first decoupled into, say, its up tetrahe-
dra and then perturbatively reconnected. Subsequently
Tsunetsugu'4 worked out a more complete treatment along
the same lines and found a dimerized state with a four-
sublattice structure. The criticism that this work predicts
symmetry breaking that is put in at the first step has attracted
a potential rebuttal in the work of Berg et al.'> with the
“Contractor Renormalization” or CORE technique. An alter-
native perspective on this physics was provided in Ref. 16
where it was shown that an SU(N) deformation produces a
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quantum dimer model whose physics is very reminiscent of
the HBB scenario. Unfortunately, the N=2 limit is mani-
festly problematic so it has not been possible to declare vic-
tory in this work. Yet another attack on the problem!” used
an alternative large-N theory—equivalent to Schwinger bo-
son mean-field (MF) theory —and found a delicate energet-
ics at small values of spin (or boson density) which never-
theless strongly indicated that the spin 1/2 problem must
break some symmetry.**

With this set of predictions of symmetry breaking as
background, in the present work we bring another approxi-
mate large-N technique—that of “slave fermions”!®!°—to
bear on the pyrochlore problem with a view to examining
whether it produces a symmetric, spin liquid, alternative. To
this end we enumerate various translationally invariant
mean-field solutions of which the lowest energy nondimer-
ized solution is one we call a “monopole flux” state; upon
Gutzwiller projection it also improves upon the fully dimer-
ized states. While this state does not break lattice symmetries
in the manner of the HBB scenario, it is not a spin liquid in
the sense of breaking no symmetries at all. Instead it is a
chiral spin liquid®®?! and breaks parity (P) and time-reversal
(T) symmetries. It also exhibits spinons in its mean-field
spectrum. We describe the unusual mean-field spectrum—
which yields a Fermi surface consisting of four lines inter-
secting at a point—and its low-energy limit in some detail.
This state was first reported in Ref. 22. Subsequently it
sparked a larger investigation by R. Shankar and two of us?
on flux Hamiltonians on root lattices of Lie groups with mi-
nuscule decorations, and these results were announced there
previously. The stability of the mean-field structure to fluc-
tuations is the next question of interest. We make progress in
that direction by enumerating the projective symmetry group
(PSG) (Ref. 24) of the state and showing that it forbids any
terms that would destabilize the mean-field Fermi surface.
This still leaves the fate of the gauge fluctuations open as a
matter of dynamics and we expect to discuss this
elsewhere.? Finally we note that as we were finalizing this
paper there appeared an independent evaluation of energies
for Gutzwiller projected wave functions on the pyrochlore,?
which agrees with our results on that score.

And now to the organization of the paper. We begin with
a brief overview of the large-N/mean-field slave fermion
treatment of the Heisenberg model in Sec. II. In Sec. III we
apply this technique to generate several mean field Ansétze
on the pyrochlore lattice. We identify the lowest energy state,
or monopole flux state, and discuss its interesting properties.
Section IV reviews in general terms how the PSG protects a
mean-field state against developing symmetry-breaking
terms. The PSG derived arguments for the stability of the
monopole flux state are given in Sec. V, where we derive the
general form of the symmetry permitted perturbations to the
Hamiltonian. We conclude in Sec. VI. Details of the PSG for
the monopole flux state can be found in Appendix B, while
Appendix A explains the numerical technique used to carry
out Gutzwiller projection.

II. LARGE-N HEISENBERG MODEL: SPINONS
AND GAUGE FIELDS

In this section we briefly review the large-N fermionic
approach to the §=1/2 SU(2) Heisenberg model, which be-
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gan as a mean-field theory introduced by Baskaran et al.'®
and was shortly thereafter systematized via a generalization
to SU(N) by Affleck and Marston."®

In this approach, we first replace the bosonic spin opera-
tors of the Heisenberg Hamiltonian

H=JXS;S; (1)
)

with bilinears in fermionic “spinon” operators,
1 +
S, = EE CioTapCip: (2)
B

The resulting Hamiltonian conserves the number of fermions
at each site, and the starting spin Hamiltonian is recovered if
we limit ourselves to physical states with exactly 1 particle
per site. Up to a constant in the subspace of physical states, it
can be rewritten in the suggestive form

J i +
H=--222> Cz‘iac/’acl‘ﬁciﬁ- (3)
20y« B
A mean-field theory arises upon performing the Hubbard-
Stratonovich decoupling

> |Xij|2 (4)

. 2
H=- E E (¢iuCjaXij+hic) + =
A

a (i)
and locally minimizing the classical field y;; to obtain self-
consistency.

In order to understand the nature of fluctuations about
such mean-field solutions it is conceptually convenient to
consider the path integral defined by the equivalent Lagrang-
ian

L= E CIa(iﬁt + M)Ci,a + 2 ¢i(cj'—,aci,a - 1)
i,a i,a

2
+ E 2 (Cj-acjaXij + hC) — }|le|2 . (5)

L oa

where ¢ is a Lagrange multiplier field enforcing the single
occupancy constraint Eac;};cm= 1.

The above Lagrangian (5) is invariant under the local
gauge transformations

T i

i0,
Ci —C;

e i,

i(6,~0,)
Xij = Xij€¢ '

b— b+ 3001, (6)

which arise from the local constraints in the fermionic for-
mulation. It follows that we have reformulated the Heisen-
berg model as a problem of fermions that live on the sites of
the original lattice coupled to a U(1) gauge field and an am-
plitude field (the phase and amplitude of y;;) that both live on
the links of the lattice. In other words, we may write x;;
=p;e"i, where a;;— a;;+ 6;— 6; under the gauge transforma-
tion (6). The mean-field theory consists of searching for a
saddle point with frozen link fields.
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As the Lagrangian (5) does not directly constrain the
phase of the ;;, it describes a strongly coupled gauge theory
where the assumption of a weakly fluctuating gauge field
invoked in the mean-field theory is, prima facie, suspect. To
circumvent this barrier, Affleck and Marston!® proposed a
large-N framework which introduces a weak-coupling limit
for the model (5) by extending the SU(2) spin symmetry
group of the Heisenberg model to SU(N) with N even. The
result is a theory of many spin flavors whose coupling
strength scales as J—J/N. In the limit that N— o, the cor-
responding mean-field theory is exact; for sufficiently large
but finite N one hopes that a perturbative expansion gives
accurate results. The validity of the qualitative features de-
duced at large N in the starting SU(2) problem is, of course,
hard to establish by such considerations and requires direct
numerical or experimental confirmation.

To effect the large-N generalization, we replace the two
spinon operators ¢; and ¢| with N spinon operators c,. The
single occupancy constraint is now modified to

N
E Cj'—acia =

a=1

(7)

D=

and the large-N Hamiltonian has the form

H=- J/NZ E c}acmcjﬁcjﬁ
a.B (i)

N
== E E (C;LacjaXij +h.c)+ _E |Xij|2- (8)
@ (i) S ip

In the infinite N limit, the action is constrained to its saddle
point and the mean-field solution becomes exact. Further, to
lowest order in ]%, the allowed fluctuations involve moving
single spinons so that as N—o we need only impose the
constraint (7) on average.

Away from N=co the link fields, especially the gauge
field, can fluctuate again although now with a controllably
small coupling. While the fate of the coupled fermion-gauge
system still needs investigation, the presence of a small pa-
rameter is a great aid in the analysis, as in the recent work on
algebraic spin liquids.?’

Finally, we note that the starting SU(2) problem is special,
in that it is naturally formulated as an SU(2) gauge
theory.?®?° This can have the consequence that the N=2 de-
scendant of the large-N state, if stable, may exhibit a weakly
fluctuating SU(2) gauge field instead of the U(1) field that
arises in the above description. We will comment on this in
the context of this paper at the end.

III. MEAN-FIELD ANALYSIS

A. Saddle points of the nearest-neighbor Heisenberg model

We begin by enumerating MF states which preserve trans-
lation invariance on the pyrochlore. A mean-field solution
consists of a choice of link fields which minimize the mean-
field energy functional for the Lagrangian (5),
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B00=N 2 <P+ S e-m| O
(ij) k

where (k) is the energy of a spinon of momentum k in the

fixed background y;;, and the chemical potential u is chosen

so that the constraint of one particle per site is satisfied on

average.

As discussed in Sec. I, previous work on the Heisenberg
model on the pyrochlore lattice has led to ground states with
broken symmetries. In this work we are particularly inter-
ested in constructing a natural state on the pyrochlore that
breaks as few symmetries as possible. To this end, we begin
our search with especially symmetric Ansdirze for which p;;
= p is independent of i and j, and the flux ®, =2 a;; through
each face of the tetrahedron is the same. The net flux =}, ®,
through each tetrahedron must be an integer multiple of 27
since each edge borders two faces such that its net contribu-
tion to the flux is 0 (mod 27). This gives the following three
candidate spin-liquid states:

(1) Uniform: ®,=0;

(2) 7 Flux: &=,

(3) Monopole: ®,=m/2. Every triangular face of the tet-
rahedron has a 7/2 outwards flux—equivalent to a mono-
pole of strength 27 placed at the center of each tetrahedron.

At infinite N a dimerized state is always the global mini-
mum of Eq. (9) (Ref. 30); thus we also consider

(4) Dimerized: y;;= X" on a set of bonds that constitute
any dimer covering of the lattice but zero otherwise.

The states (1)—(3) above are analogs of the uniform, 7
flux, and chiral states studied previously on the square
lattice.!>?! Of the above states, (1) and (2) break no symme-
tries of the problem; the third preserves lattice symmetries
but breaks P and T.

The states (1) and (2) are in fact particle-hole conjugates:
a particle-hole transformation maps cfcj+c;c,-—>—c;c,-—c;cj,
changing the sign of x on each bond and adding 7 flux to
each triangular plaquette. At N=2 this can be effectuated by
an SU(2) gauge transformation so that the states (1) and (2)
describe the same state after Gutzwiller projection.

The mean-field energies of these states are listed in the
first column of Table I. Consistent with Rokhsar’s general
considerations’®3! the fully dimerized state is lowest energy
and the monopole flux state has the lowest energy of the
nondimerized states. The mean-field states with N set equal
to 2 do not satisfy the single-occupancy constraint. While, in
principle, perturbation theory in 1/N can greatly improve the
wave function in this regard, this is a complex business (to
which we return in Secs. IV and V) ill-suited to actual ener-
getics. Instead, the somewhat ad hoc procedure of
(Gutzwiller) projecting the mean-field wave function onto
the Hilbert space of singly-occupied sites is typically em-
ployed to improve matters. This leads to resonances and
long-range correlations that can substantially lower the
mean-field ground-state energy, particularly for spin-liquid-
type states.

Expectation values in the Gutzwiller projection of a state
can be carried out using a Monte Carlo approach, as de-
scribed in Ref. 32. A brief description of the numerical
method specialized to our problem is given in Appendix A.
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TABLE 1. Mean-field energies for projected and unprojected
ground states of the mean field Ansdrze considered. The quoted
mean-field energies are the energy of (4) plus the omitted constant
—f per site required to make a correspondence with (1). The states
(7r,7r) and (77/2, 7r) are variants of the uniform and monopole state,
respectively, with flux 7 per hexagonal plaquette. The projected
wave functions were evaluated on a lattice of 5X5X5 unit cells,
or 500 sites for configurations with a four-site unit cell, and 1000
sites for configurations with an eight-site unit cell.

Eyp (unprojected) Eyr (projected)

Uniform —-0.3333J —-.3752+0.0004
 Flux —-0.3333J —-.3752+0.0004
Monopole -0.3550J —.4473 +0.0009
Dimer -.375J -.375J

(7, 7) —-0.3333J —0.3751+0.0008
(7/2,) —-0.3491J —-0.4356 +0.0003

The second column in Table I shows the numerically evalu-
ated energies of the four mean-field states with Gutzwiller
projection. We see that the monopole flux state now emerges
as the lowest-energy state of our quartet. Encouraged by this,
and also because the state has various elegant properties, we
will focus in the remainder of this work on the properties of
the monopole flux state. Note however, that we have failed to
preserve all symmetries of the Hamiltonian even in this
approach—we are forced to break 7" and P and thus end up
with a chiral spin liquid. We give a fuller description of the
symmetries of the state below.

Finally, we note that larger unit cells can be consistent
with translationally invariant states.*> Such states have an
integral multiple of /2 flux through each triangular
plaquette, but also nontrivial flux through the hexagonal
plaquettes in the kagomé planes, as for the mean-field states
on the kagomé studied in Ref. 33. By the same arguments as
employed for a single tetrahedron, we find that the flux
through the hexagons must have values 0 or 7 (mod 27) to
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preserve the translational symmetry of the lattice. (A flux of
/2 per hexagonal plaquette necessarily breaks lattice trans-
lations.) However, as noted in Table I, we find that these
states also have higher energies than the monopole flux state
both at mean field and upon Gutzwiller projection. The
above results do not guarantee that the monopole flux state is
the true ground state of the nearest-neighbor pyrochlore an-
tiferromagnet. Indeed, numerical studies of the planar pyro-
chlore find energies of —0.55/ per unit cell for valence bond
crystals for a configuration compatible with the full pyro-
chlore lattice,>* and higher spin interactions may be neces-
sary to stabilize the monopole flux state, as is the case for the
m-flux state on the square lattice.'>® Since such terms ge-
nerically exist, our focus here is on describing the energeti-
cally optimal spin-liquid state, rather than on the exact
ground state of the nearest-neighbor Heisenberg antiferro-
magnet.

B. Monopole flux state

The monopole flux state exhibits a flux of 77/2 per trian-
gular face. To write down the mean-field Hamiltonian explic-
itly we must pick a gauge. We choose x;= poe'®i, with a;
= * 7/2. The phase of *i that a spinon picks up when hop-
ping from site i to j can be represented as an arrow on the
corresponding edge, which points from i to j (j to i) if the
resulting phase is +(—)i. The orientation of the link fields,
shown in Fig. 1, gives an inward flux of 7/2 per plaquette.

The necessity of picking a gauge for the mean-field solu-
tion causes, as usual, various symmetries to be implemented
projectively. For example, the assignment shown in Fig. 1 is
not invariant under lattice rotations. However, the back-
ground link fields after rotation can be gauge transformed to
the original state, as expected from the manifestly rotation
invariant assignment of fluxes. We discuss these and other
symmetries in more detail in Secs. IV and V; here we merely
note that P and T are the only symmetries broken by the
monopole flux state.

The Hamiltonian for spinons in the gauge choice shown
in Fig. 1 is

k k,+k k.+k,
0 sin(x—l> sin( y ¥ Z) sm( x ¥ “)
4 4 4
(kx+kv) , (kx—kz> , (kz—ky)
sin 0 sin | sin| —
: 4 4 4
H=_p02qfka ko +k k. —k k—k \I,ka’ (10)
k.o sin(—u> sin( 2 Z) 0 sin<u>
4 4
+k
0

where W is a four-component vector, with Wi _=c’,. Here the index i labels the four sites in the tetrahedral unit cell.
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FIG. 1. Link field orientations in the monopole state with x
= *ipy. Hopping along the direction of an arrow induces a phase of
7/ 2; hopping against the arrows, a phase of —7r/2. The flux on each
triangular face is /2 inwards. With this flux assignment the mono-
pole flux state breaks 7 and P, but is invariant under lattice trans-
lations and rotations.

Figure 2(b) shows a plot of the energy eigenvalues of Eq.
(10) along the high-symmetry lines of the Brillouin zone. At
half filling, the Fermi “surface” consists of the lines
k(=1, =1, £ 1) which join the point (0,0,0) to the center of
the hexagonal faces of the Brillouin zone of the cubic fcc
lattice [line (L-T") in Fig. 2(b)]. Each Fermi line has a pair
of zero energy eigenstates.

Figures 3(a) and 3(b) shows a surface of constant energy
E =0 near the Fermi surface. At E=0, the four bands inter-
sect only at the origin and the constant-energy surface is
given by the four lines described above. Surfaces of constant
energy E~0, E#0 consist of four cylinders enclosing the
(1,1,1) directions, which are the surfaces of constant energy
for particlelike (E>0) or holelike (E<0) excitations about
the Fermi line. About the origin all four bands have energy
linear in k, and another, diamond-shaped constant-energy
surface appears. These surfaces intersect at the band cross-
ings along the x, y, and z axes.0
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C. Low-energy expansions of the spinon dispersion

The low-energy structure of the monopole flux state can
be divided into two regions: R;, the set of four Fermi lines
sufficiently far from the origin, and R, the area near the
origin.

In R}, only two of the four bands lie near the Fermi sur-
face, and the low-energy theory is effectively two dimen-
sional. Linearizing the Hamiltonian about one of the Fermi
lines gives

Hle, 6] =] [k,&,6](e cos O + € sin Or) W, [k,e, 6],
(11)

with energies *¢, independent of §. Here we have used the
local coordinate system

2 u v “, v
(91, )=<k+ \/ju,k—?—_’k__*'_)’ (12)
91:92.43 377 V6 27 V6 2

with 6(u,v)=tan"'(v/u) and e(u,v)=p0\s"u2+vz/(2\s’5). Curi-
ously, at mean field the low-energy spectrum is independent
of the position k along the Fermi line, depending only on the
momentum component in the kagomé planes perpendicular
to the vector ;. Thus the linearized theory away from the
origin consists of a continuum of flavors of Dirac fermions
confined to the kagomé planes orthogonal to this line.

In R, all four bands have energies vanishing linearly as
k— 0, and the low-energy Hamiltonian is given by

(b)

FIG. 2. Spectrum of the monopole state (a) shows the contour in the Brillouin zone along which the spectrum is plotted. (b) shows the
spectrum of the monopole flux state along this high-symmetry contour in the Brillouin zone. Note the Fermi line %(k,k,k).
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(a) 1.5
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FIG. 3. (Color online) Constant energy surfaces of the monopole flux state, for £/J=0.5. Decreasing E/J makes the cylinders thinner. (a)
A view of the cube of side length 7 surrounding the origin. Eight cylinders surrounding the eight Fermi lines emanate from the origin; at the
origin a diamond-line shape (the low-energy spectrum of the remaining two bands) can also be seen. This shape repeats at the cube’s corners
(a7, = ). (b) A close-up view of the region surrounding the origin. Altering the ratio E/J shrinks the entire structure, but does not change

its shape.

0 ke+k, ky+tk, kotk,

4 4 4
kx+k: 0 k,—k, kZ—kl

4 4 4

H=-p, > ¥ Via

ke k: +k, k.—k, 0 k2 -k,

4 4 4

ketk, k. —k, k,—k, 0

4 4 4
(13)

with energy eigenvalues

1
\/ Ekfig 32 kK. (14)
(<))

This dispersion relation also gives massless spinons; how-
ever, the theory is no longer one of Dirac fermions.

In addition to four bands touching at the origin, the lin-
earized Hamiltonian (13) has two zero eigenvalues on each
Fermi line. Restricting the spinors to the corresponding low-

(13) captures the principal features of the low-energy behav-
ior not only in the vicinity of the origin, but throughout the
entire Brillouin zone.

The linearized Hamiltonian has several interesting fea-
tures. First, we may express it in terms of three matrices as
follows:

= %(axkx+ aky + ak,). (15)

The a matrices are reminiscent of Dirac y matrices, albeit
with a tetrahedrally invariant, rather than rotationally invari-
ant, algebraic structure. They do not comprise a Clifford al-
gebra, but obey the anticommutation relations

{aj =28+ \/g|8ijk|Wk’

{Wist}:25ij- (16)

Further, in a 3+ 1 dimensional Dirac theory there are two
matrices (7, and ys) which anticommute with all ;. In this
sense our mean-field Hamiltonian more resembles a 2+ 1 di-
mensional Dirac theory: there is a unique matrix « such that

energy subspace again yields the expression (11). Thus Eq.  {aq,a;}=0, i=1...3, given by
0 cos(ky)cos(k,)  cos(ky)cos(k,)  cos(k,)cos(k,)
o0 = 1 [ ~cos(ky)cos(k,) 0 cos(k,)cos(k,) - cos(k,)cos(k,) an
\/Xf —cos(ky)cos(k,) —cos(k,)cos(k,) 0 cos(k,)cos(k,) ’
—cos(k,)cos(k,)  cos(ky)cos(k,) - cos(k,)cos(k,) 0

where N is a normalization factor such that (a(o))2= 1. In the continuum limit this reduces to
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1 1 1
0O = = =
V3 V3 43
-1 1 -1
[ O R —
— -
\3 V3 V3
a0 (18)
-1 -1 1
= = 0 =
V3 V3 V3
- 1 -1
— —= —= 0
V3 \"5 \6

a9 acts as a spectrum inverting operator on H, interchang-
ing hole states at energy —E(k) with particle states at energy
E(k).

We point out that many of the interesting features of the
low-energy spectrum of the monopole flux state can be gen-
eralized to a class of lattices whose geometry is related to
certain representations of Lie groups.? Indeed, the four sites
in the tetrahedral unit cell can be viewed as the four weights
in the fundamental representation of SU(4); hopping on the
pyrochlore is then analogous to acting with the appropriate
raising and lowering operators. This perspective gives an ex-
plicit connection between the hopping Hamiltonian (13) and
the ladder operators in the fundamental representation of
SU(4). Analogous hopping problems can be studied for vari-
ous other Lie group representations, as outlined in detail in
Ref. 23.

To summarize, the monopole flux state is a spin liquid
which preserves all symmetries of the full Hamiltonian ex-
cept P and 7. At mean-field level it has gapless spinons
along a one-dimensional Fermi surface of four lines which
intersect at the origin. Though strictly at N=o it has higher
energy than the dimerized state, Gutzwiller projection sug-
gests that for N=2 this is no longer the case, and the mono-
pole flux state is the lowest energy simple mean field Ansatz
after projection. We now turn our attention to what can be
said about the stability of this rather unusual mean-field
state.

IV. STABILITY OF THE MEAN-FIELD SOLUTION:
THE ROLE OF THE PSG

Next, we would like to address the question of whether
the mean-field solutions described above maintain their basic
properties at finite N and whether this holds all the way to
N=2. This is a difficult problem, whose complete solution is
not available even for the longer studied cases of the alge-
braic spin liquids in d=2.47 However, following that work
the general idea would be to try and understand if the state is
truly stable at large enough N while leaving the question of
stability at small N to detailed numerical investigation.

There are several questions here. First, is the mean-field
solution locally stable? Second, is it the global minimum?
Third, assuming the answer thus far is in the affirmative, is
the expansion about the mean-field solution well behaved?
Ideally, this would mean convergent, but it would be suffi-
cient to know that it does not destroy the qualitative features
of the gapless spinon dispersion at mean field. For example,

PHYSICAL REVIEW B 79, 144432 (2009)

in the case of the algebraic spin liquids in d=2 the spinons
interact and acquire anomalous dimensions away from N
=0 but they remain gapless in the vicinity of a discrete set of
points.?’ Finally, what is the spectrum of collective (gauge)
excitations that arise in this expansion?

Based on the experience with spin liquids in d=2, answer-
ing the first two questions in the affirmative is likely to re-
quire the addition of more terms to the Hamiltonian although
it may be possible to choose them so that they become trivial
at N=2." We have not investigated this in detail but there
does not appear to be an obstacle to doing this.

The third and fourth questions require detailed consider-
ation of the symmetry properties and the detailed dynamics
of the expansion which is that of a lattice gauge theory with
matter and gauge fields in some fashion. In this work we will
carry out the first part of this program which goes under the
study of the “Projective Symmetry Group” (PSG) discussed
in detail by Wen.?* In this section we review the concept of
the PSG and its implications for perturbative expansions. We
also show explicitly how at N=%, or in mean-field theory,
the PSG helps us understand the stability of particular mean-
field solutions.

Turning first to the PSG, observe that although the origi-
nal Hamiltonian formulated in terms of spin operators is in-
variant under the full space group of the pyrochlore lattice,
the actual mean-field Hamiltonian of the monopole flux state
is not: many of the symmetry transformations map the mean-
field Hamiltonian into different but gauge equivalent Hamil-
tonians. Thus, when working in the gauge theory formulation
of the problem, the actual symmetry transformations of the
mean-field Hamiltonian have the form

c; = gls(e))], (19)

where s is an element of the space group and g is a gauge
transformation. As the full Hamiltonian is gauge invariant,
Eq. (19) is simply an alternative formulation of the lattice
symmetries. Hence as emphasized by Ref. 24, these projec-
tive symmetry operators are exactly analogous to lattice
symmetries in the original spin problem. Indeed, the correct
choice of gauge transformation ensures that both Hy;r and H
are invariant under the PSG, so that the family

H, = Hyp+ N(H — Hyp) (20)

is also invariant and perturbative corrections in H—Hy can-
not break the PSG symmetry.

Before discussing the implications of PSG symmetry for
the monopole flux state, we would like to briefly underline
how the PSG constrains the mean-field theory at infinite N,
which is a much simpler but still instructive exercise.

Ignoring the dimerization instability, the monopole flux
state is a mean-field minimum for nearest-neighbor cou-
plings. The PSG is the symmetry group of the corresponding
mean-field Hamiltonian. We may now ask what happens to
the PSG if further neighbor couplings are included in the
Hamiltonian: in particular, do they lead to terms in the new
mean-field Hamiltonians that modify the PSG found earlier?

At N= this is a problem of minimizing the expectation
value of the sum of the quadratic Hamiltonian in Eq. (4) and
the new generic terms
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2 E (Clacjale +h.c. ) + _E |le

a (ij) lJ (i)

. (2D

wherein the primed sum runs over non-nearest-neighbor
bonds and the J;; are much smaller than the nearest-neighbor
J. We will now show that, generically, the result of the new
minimization for the perturbed problem preserves the PSG
for the nearest-neighbor problem. While we use the language
of perturbing about the monopole flux state, the argument is
general.

With the addition of the perturbation, the functional that
we need to minimize over the full set of {x;;} is

EMF = <H<F) + 5H(F)>H+§H+ E |Xl]|2 + _E |Xz]
S

bl

(22)

where the superscrlpt (F) denotes the fermionic part of the
Hamiltonian. Let X i ) denote the values of the link fields
when 6H=0, i.e., in the monopole flux state. For small J;;

we expect the new minimum to lie not far from the old one
whence the link fields will be close to the values X( ). Con-
sequently we will compute the expectation value requ1red in
the above equation in perturbation theory in 8H about H. (If
such an expansion fails to have any radius of convergence
then we are already parked at a phase transition and no sta-
bility argument is possible.)

This expansion,

Kol sH " |m)?
EMF({Xij}) =Ey+(0| 5H(F)|O> E +
n>0 EO E

E |X1/|2 + _E |le

<tl> l/ (i)

; (23)

where the numerical indices refer to the ground and excited
states of the unperturbed Hamiltonian H"({ Xf.j(.))}), has three
properties that we need. First, the linear term takes the ex-
plicit form

— > 2 (elcja)dxi; +he. (24)

a (i)

Where Oxij is x;; for the new bonds and the deviation from
Xu for the nearest-neighbor bonds. This implies that new
minimization likes to turn on exactly those y;; that transform
as the expectation values (c[,c;,). If these are, in fact, what
get turned on, then the new mean-field Hamiltonian will in-
deed inherit the PSG of the starting one. The second property
that we need can be established by considering a decompo-
sition of 6H into a piece that commutes with the PSG gen-
erators and another piece that does not. It is straightforward
to see that terms from quadratic order and beyond must give
rise to a potential which is even in powers of the non-PSG
conserving piece of 6H. Finally, at sufficiently small J;; the
potential for the x;; must be stable due to the explicit factors
of 1/J;;. Together these properties imply that the new mini-
mum must be in the “direction” selected by the linear term
and hence will exhibit the same PSG as before.
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V. PSG OF THE MONOPOLE FLUX STATE

We will now describe the PSG of the monopole flux state,
and its implications for stability at the mean-field level. The

space group of the pyrochlore lattice is Fd3m, which con-
tains 24 symmorphic and 24 nonsymmorphic elements. For
our purposes it is most convenient to divide these elements
into the 24 proper elements composed of rotations and trans-
lations and 24 improper elements involving a reflection or
inversion. The 24 proper elements are

P°={1,8C;,3C,,6C,,6C,}. (25)

The improper elements consist of

P'={i,854,35,,60,65,}, (26)

where g denotes a nonsymmorphic operation, in which rota-
tions or reflections are accompanied by translation along an
appropriate fraction of a lattice vector. P° is a proper sub-

group of Fd3m, while P is generated by the product of the
inversion operator (inversion is taken about one of the lattice
sites) with the elements of P°. The symmetry transforma-
tions, along with the full action of the PSG, are outlined in
Appendix B.

The PSG of the monopole flux state has the following
general structure, outlined in more detail in Appendix B:

(i) Translations: FCC translations, combined with the
identity gauge transformation.

(i) P space-group elements: These elements are symme-
tries when combined with appropriate gauge transformations,
which induce a 7 phase shift at some the sites in the unit
cell.

(iii) P' space-group elements: These elements are symme-
tries when combined with an appropriate gauge transforma-
tion, as above, and a time-reversal transformation.

(iv) Charge conjugation C: The charge-conjugation opera-
tor maps ciﬂc?.

A. Restricting perturbative corrections using PSG invariance

To deduce what restrictions PSG invariance imposes on
the spectrum, we begin with a generic 4 X 4 quadratic Hamil-
tonian

H? =23 Jcl

ij

(27)

Ull

The bonds J;; connect arbitrary sites in the lattice, but respect
the lattice symmetrles. In what follows, we will use the PSG
to restrict the possible quadratic terms, and show that all
terms allowed by symmetry vanish at the Fermi surface.
Hence the Fermi surface of the monopole flux state is unaf-
fected by PSG-preserving perturbations to the Hamiltonian.
For simplicity we will drop the superscript ® in the remain-
der of this section to simplify the notation.

Though the inversion P and time reversal T are broken in
the mean-field state, the combination PT leaves both the full
and mean-field Hamiltonians invariant. Terms invariant un-
der this transformation have the form
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(' +i0")clcps+ (I =id")cle s (28)

and the Hamiltonian is real in momentum space. Further,
invariance under charge conjugation forces all spatial bonds
to be purely imaginary: under C,

(J' +i")clcps+ (I =id")cl, s,
— (=S + i) eps+ (=T =i o (29)
so that J'=0 if C symmetry is unbroken. In momentum
space, if we write the Hamiltonian as /H(k), Egs. (28) and

(29) imply that H(k) is real and an odd function of k. We
may express elements of the matrix H(k) as a superposition

H,y(K) = 2 Jg.gp sinfk - (R+1,,)], (30)
R

where R is an fcc lattice vector, the indices a,b label sites
within the unit cell, and Jy,, is the coupling between sites a
and b separated by the lattice vector R and the vector r,;, in
the unit cell. This is the general form for a function periodic
in the Brillouin zone.

Diagonal Terms. Let Hy;...H,, be the diagonal elements
of H. To restrict the form of H;;, we consider the action of
all PSG operations that map site 1 in the tetrahedral unit cell
onto itself. These are (see Appendix B for labels and actions
of the PSG elements) {C;,C?,Cy3,Csy,Css}, which trans-
form H,; in the following way:

G
Hll(kx,ky’kz)_’Hll(kz’kkay)

C2

1
—>H11(ky,kz, kx)
623

—Hy (= ko= k,— ky)

Coy

HHH(_ kZ?_ ky’_ kx)

Cy

_>Hll(_ky’_kx’_kz)’ (31)

which allows us to express H;; in a form where its symme-
tries are manifest as

1
Hl l(kx’ky’kz) = E[Hl 1 (kx’k_v’kz) + Hl 1 (kpkx’ky)

+H, l(k)ukz,kx) -H, 1(kx»kz»ky) - Hll(kz,ky,kx)
- Hyy(kyky k)] (32)

Similarly we can relate H,,, Hs3, and Hy, to H;; by con-
sidering operations which interchange site 1 with sites 2, 3,
and 4, respectively. These imply

Hop(kyky,k.) = Hyy(kyk— k),
Hy(kykyo ko) = Hyy (koo = kyo k)

Haykyokyk) = Hyy (= kyokooky). (33)

While multiple transformations map between each pair of
diagonal elements, the group structure and invariance of Hy;
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under PSG transformations ensures that these mappings all
yield the same result.

The reader should note that Egs. (32) and (33) ensure that
along the Fermi lines k== (1, =1, = 1) all allowed diago-
nal terms vanish.

It is worth digressing to make one more comment on the
diagonal terms. Using the symmetrized form of H;; in Eq.
(32) above, we can rewrite the term in Eq. (30) with a fixed
R and a=b=1 as

1
‘]R;ll Sin(k . R) = gJR;“[Sin(kax + kyRy + kZRZ)

+sin(k R, + kR, + k,R,)
+sin(k,R, + kR, + kR,
—sin(kR, + kR, + k,R.)
—sin(kR + kR, + k.R.)
—sin(k,R, + kR, + k.R,)]. (34)
Expressions of the form (34) vanish if any two coeffi-
cients are equal; nonvanishing terms occur only for a sum of
at least three fcc translations. Physically this corresponds to a
hopping between a site and its translate some three lattice
vectors distant.
Off-Diagonal Terms. As H is real in momentum space,

H,,=H,,. To restrict the form of H,, consider the action of
all PSG elements which either map sites 1 and 2 to them-

selves, or interchange them. These are {534,5 12,C.}, which
transform H,, according to

Cay
I_IIZ(kX’ky’kz)_> - H12(_ ky’_ kx’_ kz)
CN‘IZ
_>H21(ky»kx’_ kz)
o
— —Hy (k= k.k.). (35)

Again, transformations mapping sites 1 and 2 onto other sites
in the unit cell can be used to deduce the form of the remain-
ing off-diagonal elements. Hence

G
H12(kx’ky’kz)*’HB(kz’kx’ky)
ci
_)H14(ky’kz’kx)
e
— = st(— ky’kv_ kx)
%)
— = H24(_ kpkx’_ ky)
o
- = H34(_ kkay_ kz) (36)

This gives off-diagonal entries
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0 Hyy(kyky,k,)
Hyy(ky.ky.k,) 0
HIZ(kZ’kx’ky) H12(ky’_ kZ’kx)

H12(ky9_ kZ’kx) Hl2(kp_ kx’ky)

PHYSICAL REVIEW B 79, 144432 (2009)

Hyy(k,kyky)  Hip(ky,k, k)

, (37)
0 H (k= k. k)

Hypkykoky)  Hip(ko—koky)  Hip(ky— kyok) 0

where again we can make the symmetries manifest by writ-
ing

1
H12(kx’ky’kz) = Z[HIZ(kmky’kz) + H12(kyakx’kz)

+ Hiy(kyky— ko) + Hp(ky ey = K2)1.

(38)

Again, it is useful to focus on the contribution to H;, from
bonds with a given R, which can now be seen to come with
the factor

k,+k,
cos(k.R,) [ sin(kax +k,R, + X_2L>

) k.+k,

+ sm(kny +k R, + —2“> ] . (39)
Equation (39) shows that H,(k,,k,,k,) vanishes along the
lines (k,—k,—k),(=k,k,—k). Of course, this can also be seen
directly from Eq. (38).

Now we may consider the fate of the monopole flux
state’s exotic Fermi surface. Since PSG rotations map be-
tween different Fermi lines, it is sufficient to consider pos-
sible alterations to the spectrum on Fermi line (k,k,k). The
most general form that H can have about the line (k,k,k) is

0 H,(k,k,k) Hy(k,k,k) H,(k,k,k)

Hoo(k,k k) 0 0 0
Hoo(k,k k) 0 0 0 ’
Hy(k,k,k) 0 0 0

(40)

which has two zero eigenvalues. Thus terms allowed by sym-
metry add neither a chemical potential nor a gap to any part
of the Fermi lines, and preserve the characteristic structure of
the monopole flux state, with two low-energy states about
each Fermi line and four low-energy states about the origin.

Note that nothing prevents the Fermi velocity vy, from
being modified as a function of the momentum along the
line. Indeed, Eq. (40) implies that the general form of v is

k
UF’(E) = 2 Jrao(Ry + R, + 1/2)cos(2kR )cos 2k(R, — R,)
v R

Jr.
+ %[Rx sin(2kR,)sin 2k(R, - R,)

+ R, sin(2kR,)sin 2k(R, - R,)

+ R, sin(2kR )sin 2k(R, - R,)]. (41)

B. Time reversal and parity

One striking feature of Hyp is that it is odd under both T
and P, reminiscent of the chiral spin state first described in
Ref. 21. Though T is naively broken, some care must be
taken to show that the apparent 7" breaking is physical and
that |¢), T|¢) are gauge inequivalent states.*® Readers famil-
iar with this subtlety from discussions of 7 breaking on the
square lattice should note that the pyrochlore lattice is not
bipartite, and hence naive time reversal is no longer equiva-
lent to particle-hole conjugation. But most directly, as ex-
plained in Ref. 21, the operator

Ejj=8;-(S; X S, (42)
where the spins i, j, and k lie in a triangular plaquette, is odd
under 7 and P. Hence if (E;j)| # 0, the state |y breaks time
reversal.

At mean-field level,

-1
7<E123> =(X12X23X31) — {X13X32X21) (43)

and states with an imaginary flux through triangular
plaquettes are T breaking. For the monopole flux state, we
have confirmed numerically that this 7 breaking in each
plaquette is robust to Gutzwiller projection; the results are
shown in Table II.

We also note the curiosity that at infinite N, the spectrum-
preserving nature of 7 and P allows us to construct addi-
tional symmetries which are not, however, symmetries of the
full H. Particle-hole symmetry at each k allows us to con-
struct the following two discrete symmetries of Hyg:

T gfx.0)) — alihlx,— 1)),

P:|ix,0)) — o ih(— x,1)), (44)

where o’ was defined in Eq. (17). Both of these commute
with the noninteracting Hamiltonian: since aalHaO:—H, we
have

TABLE II. Expectation values of the T-breaking operator (E,)
for triangular faces of the tetrahedra.

Lattice size (Ep)
3X3X3 0.039
5X5X5 0.043
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(UT'HT\¢) = - (YH"|9) = (Y{H| ),

(WP HP|p) = - (WH"|y) = (YlH| ). (45)

The matrix structure of «a is such that T and P are not
symmetries of the full Hamiltonian, however, and will not be
robust to perturbative corrections about mean field.

C. PSG symmetry and perturbation theory
in the long-wavelength limit

We have established that invariance under the PSG trans-
formations and charge conjugation forbid both mass and
chemical-potential terms on the Fermi lines. Here we explore
how these PSG symmetries are realized as symmetries of the
linearized low-energy theory away from the origin, and
hence see in that setting why they are protected perturba-
tively.

Consider the linearized theory about the Fermi line /4
=(k,k,k). A general Hamiltonian in the 2 X2 space of low-
energy states can be expressed as

H(K) = ¢ (K)A(k) g (k),

h(k) = p(k) + m(k) o3 + e(k,v)[cos(8) o + sin(0) o],
(46)
where k is the component of the momentum k along the line

and (v, 6) are the magnitude and angle, respectively, of the
momentum perpendicular to the line. Here

(k) = (O,wz,l,w) “cq(k),

l//IZ(k) = (O,(l), 1 > w2) ' ca(k)’ (47)

with w=e>™3. The states (47) are eigenstates of the rotation
operator C; which rotates about the (1,1,1) direction, with

Cii iz o W J
Under charge conjugation,

l//n(k) - ‘/’J{z(— k),
Pi2(k) — ¥}, (= k). (48)

The corresponding symmetry operator in the continuum
theory is

C:(v,0) — o[ (v, 7~ )] (49)

with the Fermi surface points at k and —k interchanged. This
implies m(—k)=m(k) and u(-k)=—pu(k).

Further, an analysis of the PSG transformations reveals
that the glide rotations (51» ;) map clockwise rotating states to
counterclockwise states while reversing the direction of the
corresponding Fermi line: ;(kl;) — i»(—kl;). This transfor-
mation leaves the mean-field Hamiltonian invariant. In the
2 X 2 basis, this is because

T:| v, 0)) — oy|h(v, 7 - 6)) (50)

is a symmetry of the mean-field Hamiltonian. Note that the
momentum transformation can be realized in three dimen-
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sions by a 7 rotation about the line x=y, and hence should
also send k— —k, though there is no way to deduce this from
the form of the mean-field eigenstates. The symmetry trans-
formation (50) reverses the sign of the mass term, but not of
the chemical potential, implying that m(—k)=—m(k) and
u(k)=u(=k). Hence we conclude that in the continuum
theory about a given Fermi line, the symmetries C and T
prevent a gap or chemical potential from arising.

One might ask why we have not considered mass gaps of
the form mo; or mo,; both of these choices turn out to vio-
late either Eq. (49) or (50). Indeed, both choices explicitly
break the rotational symmetry of the spectrum about the
Fermi line.

VI. CONCLUDING REMARKS

We have discussed an interesting mean-field (large-N) so-
lution to the Heisenberg model on the pyrochlore lattice.
This is a P- and T-breaking state in which all triangular
plaquettes have an outward flux of 7/2. After Gutzwiller
projection, this state has lower energy than all other mean-
field states considered, including the simplest dimerized
state. Its low-energy physics is rather striking, with a spinon
Fermi surface of lines of nodes preserving the discrete rota-
tional symmetries of the lattice. The symmetries of the
Hamiltonian suggest that this Fermi surface is perturbatively
stable and thus should characterize a stable spin-liquid phase,
at least at sufficiently large N.

However, our analysis of stability is thus far based only
on symmetries and does not rule out dynamical instabilities.
The study of such instabilities requires adding back in the
gauge fluctuations that are suppressed at N=o0 and studying
the coupled system consisting of spinons and gauge fields. In
the well-studied case of two-dimensional algebraic spin lig-
uids it took a while to understand that this coupled system
could, in fact, support a gapless phase at sufficiently large N
despite the compactness of the gauge fields. In the present
problem there is also the specific feature that at N=2, as the
background flux per plaquette is U(1), such an analysis
should incorporate fluctuations of an SU(2) gauge field.>*We
defer addressing this set of questions to future work.”> We do
note though that the applicability of our ideas to the strict
case of N=2 will ultimately have to be tested either in actual
experiments looking for 7 and P breaking and for the dis-
tinctive spinon spectrum of nodal lines, or in numerical work
looking for the same features, e.g., computations of the cor-
relations of the triple product operator in Eq. (42). Spinon
Fermi lines could be detected directly through neutron scat-
tering, or indirectly through measurements of the specific
heat, which for noninteracting Fermi lines in three dimen-
sions is quadratic in 7.

Finally, we note that our initial motivation in this study
was to see if we could construct a fully symmetric spin liquid
on the pyrochlore lattice for S=1/2 in contradiction with
previous studies using other techniques. We have not suc-
ceeded in that goal and, as the technique in this paper has
produced a pattern of symmetry breaking distinct from the
ones considered previously, the fate of the S=1/2 nearest-
neighbor Heisenberg antiferromagnet on the pyrochlore lat-
tice remains indecipherable.
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APPENDIX A: MONTE CARLO AND PROJECTED WAVE
FUNCTIONS

Gutzwiller projection can be carried out exactly for finite
systems using the projector in the Slater determinant basis,
using the method of Ref. 32. At half filling, the Slater deter-
minant is represented as a product of a spin-up and a spin-
down determinant of equal size (N/2), where N is the num-
ber of sites in the lattice. Each site is represented exactly
once in either the spin-up or the spin-down matrix, yielding a
wave function which obeys the single occupation constraint
on all lattice sites and is a total spin singlet. The problem
then reduces to the evaluation of expectation values of op-
erators for wave functions of finite systems with definite spin
distributions on the lattice

(ol
()

where |)=3 (a|)|a) and |@) is a specific distribution of
spins on the lattice

lay=11 CIT?,-,TH C}L?,-VL|O>'
i J

(0)= (A1)

(A2)

The expectation value of the operator O is evaluated by sum-
ming over all spin configurations on the lattice. To evaluate
this sum we follow the approach of Ref. 32, which we will
review here. The expectation value is given by

B (af0| XA w>> Ked)*
O D R L
(A3)
where
<a|0|B><B|tlf>)
fle)= 2(% ) A
[Cal?
P =" (Adb)

Here p(a) =0 and 2 p(a)=1, which makes p(a) a probabil-
ity distribution. The expectation value can be rewritten to
resemble a weighted sample, with weights given by p(«) and
evaluated using a Monte Carlo sampling. The evaluation is
executed using a random walk in configuration space with
the weight p(a). The transition probability T, of the Monte
Carlo step is
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. /:{1 pla) > pla)
“p@)pla) pla’) < pla).

The configuration «’ is generated by exchanging a randomly
selected pair of oppositely oriented spins. We also calculate
various operators in the mean-field wave function to test the
accuracy of the algorithm. In this case the one particle per
site constraint is not imposed; the configuration «' is gener-
ated by moving an up or down electron at random to another
empty up or down site.

Pyrochlore has an fcc lattice with a four-point basis. We
use the thombohedral unit cell for the Monte Carlo evalua-
tion, using boundary conditions periodic along the fcc direc-
tions. The spin correlations turn out to be quite insensitive to
boundary conditions for the lattice sizes that we have con-
sidered.

To compute the Slater determinant, the mean-field Hamil-
tonian (10) is diagonalized in the band eigenstates

(AS)

H= 3 ciiak)cme=2 B0 (e (A0)
a,bk
where ¢/ is the Fourier transform
2 s (Rj+r, /2 l+ra - (A7)

Here r, /2 refer to the points in the four site basis of the
tetrahedral unit cell. If we assume that the bands v=1,2 are

filled, the operator cm can be expressed as
cii =Sa1(k)aj§ + S, (k)ass, (A8)

where the matrix S (k) diagonalizes the Hamiltonian. The
mean-field ground state is just the Fermi sea filled to the

appropriate Fermi level which, in this case, is the first
Brillouin-zone boundary,
[Phmean= 11 ai3a35l0). (A9)

k<kf,a

We rewrite the mean-field Fermi sea |®),,.,, in first quan-
tized form,

D= Oy ®, |U)|D), (A10)
U.D
where
U)= il RN | 0), All
| > CRl,alT CRNL/zv“NL/ZH > ( )
IDy=ch, -+ cpy 10). (A12)
l,all NL/ZaN ,ZJ'

The basic Slater determinant wave function for each spin
orientation is of the form

(D(Rta’ ],V) —Det[¢(Rta "V)]a,

where @(R;,,:k;,v) is the single-particle wave function of
the electron at R; , =R;+r, /2. The wave number k;j refers to
a point in the conjugate lattice in the rhombohedral Brillouin
zone and v is the band index. In terms of the matrix S, ,(k),
the single-particle wave function is

(A13)
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TABLE III. Spin Correlations from variational Monte Carlo. To
check the accuracy of the algorithm, correlators are also calculated
at mean-field, using both Monte Carlo (MC) and Green’s function
(G) approaches.

Trial wave function — S§iS5 5785 S58% §78%

Mean field

Flux (G) -0.01388 —-0.00188 —0.00097 —0.00097

Flux (MC) —-0.01386 -0.00192 -0.00103 —0.00084
+0.00003 *=0.00004 *0.00005 =0.00006

Monopole (G) -0.01745  0.00000  0.00000 —0.00087

Monopole (MC) -0.01713  -0.00002 —0.00008 —0.00085

+0.00004 =0.00001 =0.00002 ==0.00006

Projected
Flux -0.04169 -0.00137  0.0029  -0.00270
*£0.00004 *=0.00005 #0.0001 =*0.00008
Monopole -0.0497  0.00631  0.00528 —0.00499
+0.0001 *=0.00002 *0.00004 =£0.00005

i (Ri+’a/2) )

D(R; o Ky v) = S, (k;)e™i (A14)

In the above, U={R1,a1,
sites  occupied by
:{Ri,al 2 ’RZ,VL/Z,aNL/Z
down-spin electrons.

Gutzwiller projection is imposed by ensuring that the two
sets U and D have no elements in common. The Monte Carlo
update is performed by exchanging rows selected at random
from the ®; and @, matrices.

The calculation of the transition probability T, involves
the calculation of determinants of matrices of size N;/2
X Np/2, an O(N;) operatlon The algorithm of Ceperley er

al.?¥" reduces this to an O(N? 7) operation for the special case
of updates involving one row or column. The matrix MY

’RNL/ZﬂN /2} is the set of lattice
L

up-spin  electrons, and D
} is the set of lattice sites occupied by

=®y; and the transpose of its inverse MY (similarly for ®,, )
are stored at the beginning of the Monte Carlo evolution. If

the update changes the ath row M, —A;, MY—M'Y, the
transition matrix is 7, =Det M ’U/ Det M”, U
Det M'Y Ni/zA (AL5)
Det M Det MU

Jj=1

This is due to the fact that Det(MYMV) is the matrix of
cofactors. If the move is accepted, the inverse matrix can be
updated using O(N7) operations,

i=a
N2 (A16)

i Akll_l,g»/r i#a.

The evaluation of operator expectations values has to be
handled with care as we are dealing with fermions. The rela-
tive sign of determinants must be tracked in a consistent way.
Thus we write all spin configurations in the order
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FIG. 4. Sites for the spin-correlation functions calculated in
Table III.

ch c;, |0).

_ .t N
|a>_CR1,,T c .
a1 N,/ZaN P

RNL/Z’aNL/ZT, Riﬂ]l
(A17)

The wave function is given by (®|a)=® Py (a), the
Slater determinant eigenfunction with the given spin distri-
bution «. We are interested in the operators =Sy -S; and

ia; a:

3(S. Sk, +Sg. -
( Ri,ai Rj,aj Ri,ui
specification we express the spin operators in terms of fer-

mionic operators with the same order as the spin configura-
tion,

%. ). To keep track of the properjsign
J-4;

ia;

S;f . szjm = (nRia-T - nRia_l)(nRjajT - nRjajl)/4’ (AIS)
a; 4 i # #

+ - ¥
SRi,ai SRj,aj - CRi,aiTCRi,aiLCRj,ujTCRj,ajl ’ (Alg)

_‘C;e Tc;i o Rig 1R 0 L (A20)
The amplitude SJr

tion Oy Pp (') w1th the rows of (IDUT and @ changed as
described above. SZ SR |a) is easier to evaluate as it is

SR |a) is the determinant wave func-

diagonal.

As a result of the four-site basis there are only N;/4 lat-
tice points in the Brillouin zone. Therefore, the accuracy of
the Monte Carlo evaluation is limited by the number of
points in k space. We have used a lattices of size 5X5X35
(500 sites).

A basic Monte Carlo “move” consists of 2N, updates fol-
lowed by a sampling. The first 10 000 moves were used for
thermal relaxation and were discarded. 50 000 samples were
used for the evaluation of expectation values. These were
divided into ten sets and the average in each set was used to
estimate the statistical fluctuations and error bars of the
Monte Carlo evaluation. To check the accuracy of the algo-
rithm and the effect of finite lattice size we evaluated spin-
correlation functions of the mean-field states and compared
with results from the numerical evaluation of Green’s func-
tions. The Monte Carlo results are quite close to the expected
values (see Table III). The site indices of the spins refers to
Fig. 4.
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TABLE IV. Action of PSG point-group rotations on spinon operators.

1 C c C, c G, G C, cl C, C, C.
Cy Cy cy Cy —C3 CH —Cy c3 —Cy —Cy —C3 CH
[ c3 Cy —C) —C) Cy cy —Cy C3 —C3 Cy —Cy
C3 Cy cH —Cy Cy —C3 —C3 [ cy [ cy Cy
Cy cy c3 C3 cy -Cy cy —Cy —Cy cy —C) —C3
k, k, k, —k, k, k, —k, —k, —k, k, —k, —k,
k, k, k, k, —k, —k, —k, —k, k, —k, ky —k,
k, k, k, —k, —k, —k, k, k, —k, —k, —k, k,

APPENDIX B: THE PSG OF THE MONOPOLE
FLUX STATE

1. Symmetries of the pyrochlore lattice

The space group Fd3m of the pyrochlore lattice consists

of the 24-element tetrahedral point group 43m, and a further
24 nonsymmorphic elements. We will briefly describe the
actions of these symmetry operations here. All vectors are
expressed in the basis of the standard cubic fcc unit cell.

The actions of the tetrahedral point group fix the position
of one tetrahedron’s center [at, e.g., (a/8,a/8,a/8)]. Its el-
ements are:

(1) The identity;

(2) 8Cj5: there are four threefold axes, one passing through
each vertex and the center of the opposite face. Rotations
about this axis permute the three vertices not on the axis.
These we label C,...C, and Cj...C3, where C;,C7 fix site i
of the tetrahedral unit cell.

(3) 3C,: There are three twofold axes, parallel to the x, y,
and z axes. Each axis bisects a pair of edges on the tetrahe-
dron; the ensuing rotation exchanges pairs of vertices. These
we label C..C,,C.

(4) 60, A plane of reflection passes through each edge
and out the center of the opposite face. These planes lie on
the diagonals with respect to the fcc cubic unit cell, and
hence are called diagonal reflections.

(5) 6S,: An improper rotation of degree 4 about the axis
bisecting two edges (parallel to the x, y, or z axis) is also a
symmetry. The tetrahedron is rotated by m/2 about, e.g.,
(1/8,1/8,z) and reflected through the plane z=1/8. This
operation squared produces one of the twofold rotations so
each axis contributes two group elements.

The remaining nonsymmorphic elements, which we dis-
tinguish from their symmorphic counterparts using the nota-

tion S, are:

(1) 6C,: There are three fourfold screw axes:
(3/8,1/8,2), (3/8,y,1/8), and (x,3/8,1/8). The symmetry
rotates the lattice by 7/4 about such an axis, and translates
by 1/4 of the side length of the fcc cubic unit cell along the
axis. Each axis accounts for two elements of the quotient
group, as Cﬁ:tCz, with 7 an fcc translation and C, one of the
twofold rotations of the point group. These we label
C.C2.C,.C.C..¢

(2) 6C,: Along each of the six edges of the tetrahedron
(the fcc basis vectors) there is a twofold screw axis. The
lattice is translated along the edge of a tetrahedron, then

rotated by 7 about this edge. These we label 5,-]», where 5,-]»
has a screw axis along the line joining sites i and j.

(3) 36%: The x, y, and z planes of the cubic unit cell each
contain a horizontal glide plane. The lattice is translated
along an fcc vector in the plane, e.g., by (1/4, 1/4, 0), and
then reflected through the plane—in our example, through
z=0.

(4) i The lattice is inverted about the origin.

(5) 854: The products of the 8 Cj rotations with the inver-
sion give eight improper threefold rotations. (These are not
in the point group because they map a single tetrahedron
onto its neighbor.)

For our purposes these 48 elements divide into 24 C ele-
ments involving pure rotations and translations, and 24 S
elements involving improper rotations, reflections, or inver-
sions. The S elements are not symmetries of the monopole
flux state, as they map monopoles to antimonopoles; to con-

TABLE V. PSG action of screw rotations.

Cpp o 3 o C 23 Cay 534 éx éy éz 5)3( 53 53
c cy c3 Cy4 -y -y -y c) Cy c3 c3 cy cy
cy c —Cy c) c3 Cy4 c) —cy c cy c c3 —C3
c3 c3 cq —c3 c) c3 Cy4 c cy —Cy cy —Cy c
cy —Cy Cy4 cq Cy4 c) c3 c3 —C3 c —Cy c cy
k, ky, k, -k, -k, —k, —k, ky k k, —k, —k, ky,
ky, k, —k, k, —k, —k, —k, -k, k, ky ky k, —k,
k, —k, k, ky, —k, —k, —k, ky, —k, —k, k., k, k,
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TABLE VI. Effect of point-group rotations on low-energy eigenstates.

c c, C; C, c, c, C.
U2y o i — oy -0’ Sz o 0
4P iy i) - —wihy) i Wi, iy
¥ Y i) ¥ 03 -3 -y -y
U %) @iy 4P i) ) —wify —wi
UZS] —wi Y i - U1 -y iy
1Y) —w’iny %) i) —n U —wiy oYy
18 —w’is i - oy U i) —wis
%) —wis) i, —win) i 4P @iy -’

struct the appropriate symmetry elements they must be com-
bined with a time-reversal transformation. Since all such el-
ements can be expressed as a product of a C element with the
inversion, this is simply a consequence of the fact that while
P and T are separately broken in the monopole flux state, the
combination PT is still a symmetry.

2. PSG

Here we list in Tables IV and V the PSG transformation
rules for the symmetry operations described above. Through-
out, we use the gauge illustrated in Fig. 1, in which all bonds
are either ingoing or outgoing from site 1; starting from a
different gauge will permute the gauge transformations listed
here (note that this has no effect on which bonds are allowed

TABLE VII. Effect of twofold glide rotations on low-energy
eigenstates.

6‘12 513 6'14 6‘23 524 6'34
U8 oy wz%z —wiy —wziﬁlz =12 o)
140 wzl/le i —wzl/fzu —wi = w2¢11
Uy P i %) ez %) —(021//22
U i wzl/le ¥ w24/f31 = —win)
Uy —wis) 40 o3 —ihn %) —a)2¢42
b -0ty Uy i =i Uy —oy
by -0t 0~ o U5 a3}
) -y Oy oy iy UZy i

or disallowed by the PSG, however). Note that these tables
only show the mapping between the site labels 1-4; it is
important to bear in mind the effect of the translations in the
case of the nonsymmorphic elements, which reverse the di-
rections between sites by interchanging up and down tri-
angles. To this end we also include a table of momentum
transformations under these operations.

Since S elements are products of C elements and inver-
sion, it is sufficient to consider the 24 rotation operations,
together with the operator i7T. Note that group multiplication
in the PSG is valid modulo the global gauge transformation
¢;— —c;, which clearly does not alter the Hamiltonian. Thus
only the relative phases of the four sites in the tetrahedral
unit cell are relevant to the PSG transformation.

3. Action of the PSG on low-energy eigenstates

Recall that the eigenstates of the low-energy excitations
about the Fermi surface can be expressed in terms of eigen-
states of the point-group rotation operators 8C; [c.f. Eq.
7]

Tables VI and VII list the action of the rotation elements
of the PSG on these low-energy states. Since Eq. (47) is PT
invariant, it is sufficient to consider the action of the rotation
subgroup; the other PSG elements are combinations of rota-
tions with the inversion, and cannot procure new information
about the low-energy behavior. Note that proper rotations
always map clockwise rotating states to clockwise states, and
counter-clockwise to counter-clockwise. The improper rota-
tions, conversely, map counter-clockwise rotating states into
clockwise rotating states, and vice versa.
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